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1. Introduction

As the title suggests, in this paper, we outline an inductive approach to
the representation theory of the symmetric groups, based on the paper “A
New Approach to the Representation Theory of the Symmetric Groups”
written by Vershik and Okounkov [VO05]. Instead of simply regurgitating
the work of Vershik and Okounkov, the idea behind this paper is to use
a complicated-enough example (namely, we will be looking at the standard
representation of S4) to illustrate the results presented in this paper. Having
this companion example to work through will (hopefully) make everything
more easily understood and digestible.

The traditional approach used to study the representation theory of Sn
([FH91]) is unwieldy for multiple reasons: it involves induced representa-
tions, which are difficult to decompose into irreducibles; the correspondence
between diagrams and representations is rather unnatural; this approach
obscures some very important properties of Sn. In particular, our approach
makes use of the natural chain of embeddings Sn−1 ↪→ Sn (so that the rep-
resentation theory of Sn relies on that of Sn−1) and the fact that symmetric
groups are Coxeter groups. Lastly, our inductive approach is preferable
because it can be generalized to other such inductive chains of groups.

2. Representations of S4

Throughout we assume a basic knowledge of representation theory—this
section is devoted to recalling the representation theory of Sn for n ≤ 4.
Namely, we will just list out the relevant character tables and name the
various irreducibles. For S1, we just have the trivial representation, T , and
for S2, we let U1 be the trivial representation and let U2 be the alternating
representation:

S1 (1)
T 1

S2 (1) (12)
U1 1 1
U2 1 −1

We let V1, V2, V3 denote the trivial, standard, and alternating representations
of S3:

S3 (1) (12) (123)
V1 1 1 1
V2 2 0 −1
V3 1 −1 1

S4 (1) (12) (123) (1234) (12)(34)
W1 1 1 1 1 1
W2 3 1 0 −1 −1
W3 2 0 −1 0 2
W4 3 −1 0 1 −1
W5 1 −1 1 −1 1
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The character table for S4 is given above, where W1 and W5 are respec-
tively the trivial and alternating representations of S4, W2 is the standard
representation, and W4

∼= W2 ⊗W5.

3. The Main Theorem

Theorem 3.1. The irreducible representations of Sn are in bijective cor-
respondence with Young diagrams with n boxes. Moreover, each irreducible
representation of Sn has a basis whose elements are indexed by standard
Young tableaux of the same shape with n boxes.

Example 3.2. In the case of S3, we will see that

V1 ←→ V2 ←→ V3 ←→

4. The Branching Graph

Consider an inductive chain of finite groups

{1} = G(0) ⊂ G(1) ⊂ G(2) ⊂ . . .
For each n, let G(n)∧ denote the set of isomorphism classes of irreducible
complex representations of G(n). If λ ∈ G(n)∧, let V λ be the corresponding
G(n)-representation.

Definition 4.1. The branching graph of

{1} = G(0) ⊂ G(1) ⊂ G(2) ⊂ . . .
is the multigraph with

(1) Vertex set
∐
n≥0G(n)∧;

(2) Edges given in the following way: Let λ ∈ G(n)∧ and let µ ∈ G(n−1)∧.
Consider V λ as a G(n− 1)-module, and decompose it into irreducibles.
Let k be the multiplicity of µ in λ as a G(n−1)-module (i.e. the number
of times µ appears in this direct sum decomposition). Then, µ and λ
are connected by k directed edges with source µ and target λ. If k is
nonzero, we write µ → λ. If i < n− 1, then no vertex in the ith level of
the graph is connected to any vertex in G(n)∧.

For any representations µ and λ in the branching graph, we say µ ⊂ λ if
there exists a path from µ to λ. If all multiplicities are 0 or 1 (so we have a
graph, rather than a multigraph), then we say the branching is simple.

Theorem 4.2. The branching of Sn is simple.

We omit the proof and instead illustrate the above definition and theorem
with S4. By examining the character tables of S4, it is not difficult to
determine its branching: starting with Sn one can literally omit the columns
of the character table containing elements not in Sn−1; this will give the
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characters of representations in the nth level of the branching graph as
Sn−1-modules. From there, we know how to decompose everything into a
direct sum of irreducibles of Sn−1; the branching follows inductively.

Example 4.3. The branching of S4 looks like:

T

U1 U2

V1 V2 V3

W1 W2 W3 W4 W5

Definition 4.4. For chains of groups with simple branching, the decom-
position of a G(n)-module into G(n − 1)-irreducibles is canonical. Then,
inductively, for each λ ∈ G(n)∧, we get a canonical decomposition of V λ

into G(0)-modules:

V λ =
⊕
T

VT ,

where the sum is indexed by all chains (i.e. increasing paths from the trivial
G(0)-module to λ in the branching graph) T = λ0 → λ1 → . . . → λn,
where λi ∈ G(i)∧ and where λn = λ. Up to scaling, this process gives us
a basis {vT } for V λ indexed by all paths from the trivial G(0)-module to
λ; this is called the Gelfand-Tsetlin basis. The disjoint union of all such
Gelfand-Tsetlin bases is called the Young basis, which we denote by Y.

Example 4.5. We compute the Gelfand-Tsetlin basis of the standard rep-
resentation of S4, W2. Recall that W2 = {(a1, a2, a3, a4) |

∑
ai = 0}.

Restricting our S4-action to S3, it is easy to check that

W2 = span{(1, 1, 1,−3)} ⊕ span{(1,−1, 0, 0), (0, 1,−1, 0)},

where the first S3-module is isomorphic to the trivial representation; the
second to the standard representation of S3. Restricting again to S2, the
above decompose into span{(1, 1, 1,−3)} and

span{(1,−1, 0, 0), (0, 1,−1, 0)} = span{(1,−1, 0, 0)} ⊕ span{(1, 1,−2, 0)},

where the first module is the alternating representation of S2; the other is
the trivial representation. This implies that W2 decomposes canonically into
the following direct sum of S1-modules:

W2 = (1, 1, 1− 3)⊕ (1, 1,−2, 0)⊕ (1,−1, 0, 0).

Thus, {(1, 1, 1−3), (1, 1,−2, 0), (1,−1, 0, 0)} is our Gelfand-Tsetlin basis for
W2. Moreover, we note that each vector corresponds to a path in the branch-
ing graph:

(a) (1, 1, 1− 3) corresponds to T → U1 → V1 →W2
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(b) (1, 1,−2, 0) corresponds to T → U1 → V2 →W2

(c) (1,−1, 0, 0) corresponds to T → U2 → V2 →W2.

5. The Gelfand-Tsetlin Algebra and Young-Jucys-Murphys
Elements

Definition 5.1. Denoting by Z(n) the center of CG(n), the nth Gelfand-
Tsetlin (sub)algebra of the inductive family of groups is the algebra gener-
ated by

Z(1), Z(2), . . . , Z(n).

This is denoted GZ(n). It can be shown that GZ(n) is a maximal commu-
tative subalgebra of CG(n) and that it is the algebra of all operators that
are diagonal in the GZ-basis.

From here on out, we let G(n) = Sn and restrict to this case. We look at
a special basis of GZ(n):

Definition 5.2. The Young-Jucys-Murphys (YJM) elements X1, . . . , Xn

are the elements
Xi := (1i) + . . .+ (i− 1 i)

(with X1 = 0) of CSn.

Because GZ(n) is the algebra of all operators that are diagonal in the
GZ-basis, the Young basis is a common eigenbasis of the YJM elements.
Thus, the following definition makes sense:

Definition 5.3. For any v in the Young basis, the weight of v is the n-tuple

α(v) := (a1, . . . , an) ∈ Cn,
where ai is the eigenvalue of v under Xi. The spectrum of Sn is the set of
all tuples:

Spec(n) = {α(v) | v ∈ Yn}.
The weight of a vector determines it up to scaling. By definition, we see that
Spec(n) is in natural bijection with the set of all paths in the branching graph
of Sn (recall that each vector in Y is indexed by a path in the branching
graph). Let ∼ be the equivalence relation on Spec(n) equating two weights
if their corresponding paths have the same target in the nth level of the
branching graph. In other words, for any α, β ∈ Spec(n), α ∼ β if vα and
vβ belong to the same irreducible representation of Sn.

Example 5.4. We calculate the spectrum of the standard representation
of S4 with respect to the YJM elements. Our YJM elements are X1 = 0,
X2 = (12), X3 = (13)+(23) andX4 = (14)+(24)+(34). For v1 = (1, 1, 1−3),
it is just a computation to see that

X1v1 = 0, X2v1 = v1, X3v1 = 2v1, X4v1 = −v1,
so α(v1) = (0, 1, 2,−1). Similarly, we may compute that for v2 := (1, 1,−2, 0),
α(v2) = (0, 1,−1, 2); for v3 = (1,−1, 0, 0), α(v3) = (0,−1, 1, 2). Under the
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equivalence relation ∼, we see that α(vi) ∼ α(vj) for all i, j, since the vi’s
all belong to the same irreducible representation of S4.

6. Young Diagrams, Tableaux, and Young’s Lattice

Begin by noting that there is a partial order on the set of all Young dia-
grams given by inclusion. In particular, given two partitions λ = (λ1, . . . , λk)
(with λ1 ≥ λ2 ≥ . . . ≥ λk) and µ = (µ1, . . . , µj), λ ≤ µ if λ1 ≤ µr1 for some
r1, λ2 ≤ µr2 for r2 > r1, and so on. This is perhaps easier to represent
pictorially:

≤ ≤

but

6≤

This partial order gives us a lattice, called Young’s lattice, which we denote
by Y. The nodes in this lattice are given by all possible Young diagrams,
and we draw and edge between two nodes if they differ by exactly one box
and if one is less than the other under our order. We note that given two
diagrams λ and µ, λ ≤ µ if and only if there exists a path from λ to µ in
Young’s lattice.

Now, we describe a bijection between standard Young tableaux and paths in
Young’s lattice. The bijection is as follows. Given some path in the lattice
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starting at the bottommost vertex, note that in each step of the path, we
add a box to the diagram. For the ith step in the path, place the number i
in the box we add.

Example 6.1. We illustrate this for tableaux of shape (3, 1). We have the
following correspondences:

→ → → ←→ 1 2 3

4

→ → → ←→ 1 2 4

3

→ → → ←→ 1 3 4

2

7. Content Vectors

Definition 7.1. A vector (a1, . . . , an) ∈ Cn is called a content vector if

(1) a1 = 0;

(2) for m > 1, if am > 0, then ai = am − 1 for i < m; if am < 0 then
ai = am + 1 for i < m;

(3) if ai = aj = a for ai < aj , then {a− 1, a+ 1} ⊂ {ai+1, . . . , aj−1}.
The set of all content vectors of length n is denoted Cont(n). There is an
equivalence relation ≈ on Cont(n) defined by α ≈ β if α is a permutation
of β, where α, β ∈ Cont(n) [Kim18].

Definition 7.2. Given a Young diagram, we may assign to each box in the
diagram a number, called the content of the box. To do so, we assign coor-
dinates to the Young diagram: boxes in the ith column have x-coordinate
i−1, and boxes in the jth row have y-coordinate j−1. Then, the content of
some box is the x-coordinate of the box minus the y-coordinate of the box.

Example 7.3. The contents of the boxes in (2, 2) are given below:

0 1

−1 0

Theorem 7.4. To each Young tableaux with n boxes, we may associate a
content vector of length n. To do so, let box i be the box of the tableaux
with the number i in it. Then, the vector in question is simply the vector
in Zn whose ith coordinate is the content of the ith box. This is a content
vector. Moreover, this correspondence is a bijection, and α ≈ β if and only
if the corresponding paths in Young’s lattice end at the same diagram (i.e.
the corresponding tableaux have the same shape).

The proof is omitted, and instead we calculate the content vectors of the
tableaux from Example 6.1.
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Example 7.5. The contents of (3,1) are given by

0 1 2

−1

Hence, the associated content vectors are

1 2 3

4
←→ (0, 1, 2,−1)

1 2 4

3
←→ (0, 1,−1, 2)

1 3 4

2
←→ (0,−1, 1, 2)

Now, a little more work (specifically one needs to study Coxeter genera-
tors) and some induction gives the following theorem:

Theorem 7.6. Spec(n) ⊂ Cont(n)

The following result is also important:

Proposition 7.7. If α ∈ Spec(n) with α ≈ β for β ∈ Cont(n), then β ∈
Spec(n) and α ∼ β.

8. The Main Theorem (reprise)

The payoff of all of the above work is the following theorem, which is the
main result from earlier.

Theorem 8.1. Young’s lattice Y is the branching graph of the symmetric
groups, and the spectrum of the Gelfand-Tsetlin algebra GZ(n) corresponds
bijectively to the set of paths in Yn, which is just the set of standard Young
tableaux with n boxes. More specifically, Spec(n) = Cont(n), and their re-
spective equivalence relations coincide: ∼=≈.

Proof. By Theorem 7.4, Cont(n)/ ≈ is the set of classes of tableaux that
have the same shape. Therefore,

#(Cont(n)/ ≈) = p(n).

Now, Proposition 7.7 tells us that each equivalence class in Cont(n)/ ≈
either contains a subset of Spec(n) or has empty intersection with Spec(n).
Moreover, if the class in Cont(n)/ ≈ meets Spec(n), then it is a subset
of some class in Spec(n)/ ∼. Now, recall that the number of irreducible
representations of Sn, #S∧n , is given by #(Spec(n)/ ∼). Since the number
of irreducible representations of a group is equal to the number of conjugacy
classes, and since conjugacy classes in Sn are determined by cycle type, it
follows that

#(Spec(n)/ ∼) = #S∧n = p(n),
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as number of possible cycle types in Sn is equal to p(n). Ergo, each class of
Cont(n)/ ≈ coincides with one of the classes in Spec(n)/ ∼, implying

Spec(n) = Cont(n) and ∼=≈ .
This is exactly what we wanted to show. �

We return to our example of the standard representation W2 of S4 for a
final time:

Example 8.2. We calculated in Example 5.4 the spectrum of the Young
basis of W2 with respect to the YJM elements. Specifically, we saw that

(1, 1, 1− 3)←→ (0, 1, 2,−1)

(1, 1,−2, 0)←→ (0, 1,−1, 2)

(1,−1, 0, 0)←→ (0,−1, 1, 2).

These are elements of Spec(4), and they all belong to the same equivalence
class under ∼. By the previous results, we know that each of these is a con-
tent vector associated to some tableaux with 4 boxes. Moreover, we should
see that each of the associated tableaux have the same shape, since ∼=≈
and since two tableaux have the same shape if and only if their associated
content vectors are equal under ≈. We saw earlier in Example 7.5 that

1 2 3

4
←→ (0, 1, 2,−1)

1 2 4

3
←→ (0, 1,−1, 2)

1 3 4

2
←→ (0,−1, 1, 2).

Therefore,

(1, 1, 1− 3)←→ (0, 1, 2,−1)←→ 1 2 3

4

(1, 1,−2, 0)←→ (0, 1,−1, 2)←→ 1 2 4

3

(1,−1, 0, 0)←→ (0,−1, 1, 2)←→ 1 3 4

2

gives us the correspondence between the Young basis of W2 and Young
tableaux. Moreover, because ∼=≈, this tells us that the representation W2

of S4 corresponds to the Young diagram given by (3,1),

W2 = span{(a1, a2, a3, a4) ∈ C4 |
∑
ai = 0} ←→
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